Chapter 3.4
Upper Bounds on the number of
resonances



Motivation

* if we have the operator —A + V on a bounded domain (eg T") then
we have a discrete spectrum, and for V € L*(T", R), Weyl's law
gives us

 |{1: 2% € Spec(—An + V), |A| < 1} = cvol(T™)r™ (1 + 0 (%))

2v0l(Bpn(0,1))

(2m)™

¢ 1-d X {mg(A): 2] < 1} = HEEEE A1 (1 4 0(1)

* with ¢, =




Theorem 3.27 (Upper bounds on the number
of resonances)

« forn = 3,0dd and V € Ly, (R™; C), let mg(A) be multiplicity of
resonance A, then:

* Liermr(d) < Gy

e history: r™*1 was proved by Melrose in ’84, r™ proved by Zworski in

‘89, there is an upper bound proof for even dimensions (Vodev ‘94),
lower bounds are still unknown



ldea

* Bound my by my, (1) which is the number of zeros of H(A) =
det(I — (VRy(A)p)™*1). Then control the number of zeros using
complex analysis by the growth of H.



Define H(A)

e Let Hy (1) == det(Il — (VRy(1)p)™*1) with p € CZ° 1 on support of V
* To do this we need:

* Lemma 3.24 (Trace class properties)

*V,p € Lepmp(R™,C) n = 3,0dd

n+1

* VRo(Dp)P,p =2 —-
* is an entire family of trace class operators



Review of trace class operators

* For a compact operator A: H; = H, on Hilbert spaces, we can write

*A=X3si(e ® fj)
*So =51 =— 0, ¢, fj orthonormal systems. s;(A) are called singular
values.

* An operator is trace class if };s;(A) < o, so we must show:

* Yisi((VRy(W)p)P) < o0



Review of Singular Values

1
* A compact, then A = X5’ 5; (ej X f]) with s; = A(A"A)z the singular
values with sy = s =2— 0

* So = ||All 15 p2

* Proposition B.15 for compact operators 4, B then

* Sjyk(A+ B) < 5;(A) + s (B)

* Sj+k(AB) < 5;(A)sk(B)

* If Ais compact and B is bounded, then s;(AB), s;(BA) < ||B||s;(A4)



prove 2, ; Sj((VRO (A)p)p) < 00

Let p; € C°(R™) with supp p; < B(0, R), then we can consider the map
p1Ro(W)py: L (TR) - L*(TR) with T = R/RZ™

-1 1
501 RoMWp1) = 5 ( (~Brg +1)  (=Brp +1) p1RoWps
By proposition B.15 if A is compact and B bounded, then
s;(AB) < ||Blls;(4)

Sj ((—Ar}g + 1)_1 (_AT}? + 1)1 p1R0(/1)p1> <s; ((_Arg + 1)-1)

2
By B.3.9, we get the first term is bounded by Cj =

|(_AT,§ + 1)1 p1Ro(Dpy

The second term can be bounded using theorem 3.1
PR pll gz < C|I(L + 2D eCmD-]|

Putting this together, we get

5 (p1Ro(Wpy) < CIAlj e 0m D=

Finally, take p; = 1 on supp p U supp V to get

_2p
5i((VRy(Dp)P) < €1 1217 exp(C,(Im 1))
which is summable whenp > %



proof

* For a trace class operator A, we can define the Fredholm determinant
det(l — A),

* Prop B.28: If A is of trace class, then I — A is invertible if and only if
det(/ —A) # 0

* We set H(A) = det(I — (VR,()p)™**1)
* let my(4) be the multiplicity of a zero of H(A)
* Theorem 3.26 (Multiplicity of resonance)

* Given H as above and mg(A) the multiplicity of A as a zero of H(A),
then

*mr(l) <my(d) forA € C



mg(A) < my(A)

* enough to prove when my (A1) < 1 (by theorem 3.14)
* because n is odd, we know that

* 1 = (VRy(W)p)™*t = XT_o(=VRo(Dp) (I + VRy(A)p)
* If Aisasimple pole of R,/ (4) then since

* Ry(M) = RyW)U + VRy(D)p) (I —VR(A (1 — p))

* (3.2.1) we must have that (I + VR,(A)p) has a nontrivial kernel
(Fredholm Operator stuff).

* Therefore the LHS has nontrivial kernel therefore H(A) = 0 so thet
my(1) =2 1 =mgz(1)



Relate my (4) with growth of H

* Jensen’s formula:

e If H is holomorphic and n(t) is the number of zeroof Hin |z| < t
then

En(t 1 (%" .
f th + log|H(0)| = —f log|H(e(‘9)r)|d9
o ¢ 21 ),

(108 lgﬁljzng(Z)l - 10g|H(0)|)

* We want to now prove |H(1)| < Aexp(4[A|™)

1 21 n(t)
° < <
n(r) — log2 fT t dt < log



bound H(A4)

* Use Weyl inequality B.5.11

. |det(I — A)| < 12, (1 +5; (A))
e where in our case A = (VRy,(1)p)"*?
* Then we can use proposition B.15 again to get

* 5;((VRy(W)p)™*1) = 5;((VpRy(D)p)™1)
» < IVIISH s (R (D)™ )
. < VI (s 4 (pRo(@p))"“

n+1



Bound H(A) for Im(A) = 0

* So we are after bounding s;(pRo(1)p)
e Let's first suppose that Im A = 0, recall that we already proved that

1 2 1
* 5j(p1Ry(A)p1) < C min (|/1|-1,j‘z, |/1|j‘ﬁ) exp(C(ImA)_) < Cjn
n+1 (n+1)

 se ((VRyP™) < IVIEFCK™ 7 < Gk

c IH| < TTis (1 + si(WRo)p)™1))
* Then since [](1 + x;) < exp ).x; we get:

« H(A) < exp (C1 Dk=1 k_nTH)




Bound H(A) for Im(1) < 0

* Now let Im(A) < 0, then by 3.1.19 (Stone's formula for the real laplacian)

iﬂ.n_z

* RoAx,y) = Ro(-Axy) = ;o=

*  We can rewrite this as

* p(Ro(A) = Ro(—))p = an A" 2E, (1) E,(A)

* where E,(Du(w) = fRn e M) p()u(x)dx (L2(R™) - L2(S™1))
* Then we can again use B.3.5 to get

+ 5;(pRo(W)p) = 5 (@nA"2 E,(2) E,(2) + pRo(—2)p)

* Prop B.15 allows us to break up this as:

© sy (anzﬂ-2 E,(1)'E, (/1)) +s (pRy(—A)p)

fsn—1 eil(w,x—y)dw

© < @l |5 @y (B, () + s (PRo(=2)p)

+ < Cexp(CiaDsyy (E,) + Cjx



Bound H(A) for Im(4) < 0

Now we gotta estimate s; (Ep (/1)), for which we use the Laplacian on a sphere —A¢n-1

55 (@) < 57 ((=agnr + D7) [[(=Agns + DE, W]

By the Weyl law, we can bound the first term by Clj_ﬁ
The second term can be bounded by using the fact that supp p < B(0,R)

[(agns + D'EDI <G, sup 1(=8,, + D'eltx]
a) )
|x|<R

Then we can bound this by Cauchy estimates, which say
|f(")(zo)| < %Mr where M, is the max value of f on a boundary of a ball B,.(z;)

so playing around we get:”(—Asn—l + 1)lEp (/1)“ < Clexp(C{|A])(2D)!



Bound H(A) for Im(4) < 0
* Then we get s; (Ep (/1)) < Cllj_nz_—ll exp(Cy|A])(21)!
* let's choose a good [, using (21)! < (21)?! we have:

l 2t j _nz_—l1 jﬁ

1

where [ = (L)n_l

C3€

1
* Therefore s; (Ep(/l)) < Czexp (Czl/ll — ]7:1)

2



finish proof

* Now we can just put everything together, we have:

n+1

n+1
sk((VRo(Dp)™*t) < ¢ ( s ](pRo(A)p)) <eXp(C IAI)SH(E D +Cj )

1

kn—1 +1

+Ck

C4 exp(CylA]), k < C4|/1|n_1}

Sosi((VR (/1)[))"+1 < —n+1
(VR ) Cokn, k= Cyam?

< Cexp <C|/1|

Therefore we get:

H! < TT(1+ 5 (VRy(p)™™)) < exp(CalAD) (xp Ty apnea Cak™ 7 ) < exp(CsIAM



Chapter 3.5
Complex Valued Potentials with
NO resonance



Motivation

* Theorem 2.16:
* Y{mrpA): A <7} = 2IchsuppVl 1. (1 +0(1))asr > o
VIA

* so we have infinitely many resonances in dimension 1, this is not the
case in higher dimensions.

* There exists potentials with no resonances.

19



Theorem 3.29 (Complex Valued potentials with no
resonances)

* Let (r, 0, x) be cylindrical coordinates in R¥*2 with k odd:
* x = (x1,%2,x ),x; =7 cosf, x; =rsinf, x €R*

* Suppose that V' € Ly, Rk*2, C) is of the form:

* V(x) = "W (r,x ) with W € L%,,,([0,0) x R¥)

* if m # 0 then R,(A) is entire (ie there are no poles and therefore no
resonances for —A 4+ V)



Proof Outline

* Assume there is a pole, get an L? resonant state, compute the norms
of the orthogonal projections onto Fourier modes to see they are all
zero, and so our resonant state is zero, which gives a contradiction!



resonant state

* Assume Ry, (A) has a pole.
* by 3.2.18, we know that

* Ry(1) = Ry(MDU + VRO(/UP)_l(I —VRy(M)(1 - P))

. %/oRsm |ICIt\{ of a pole of R, (1) is equivalent to simplicity of a pole of (I +
o

. And m g(/l) > 0 willimply that (I + VRy(1)p)~! has some pole for any p €
suchthatp = 1onsupp V.

Let s take p p(r,x")

By results about poles, we know that there exists a u € L? such that
(I+VRy(M)p)u=0

sou = —VRy(A)pu = —-VpRy(A)pu



Fourier Mode Projections

* Let Iyu(r, H,x') = ello %foznu(r, gb,x')e_”‘/)dcp (this is the

projection onto the [t" fourier mode)
* p doesn't depend on 8, therefore I1; commutes with pRy(1)p

e sinceu = —VpRy(A)pu = —eimQW(r,x')pRO(A)pu
» therefore I, yu = I (e™WpRy(Dpu) = e™WpRy(1)pllu
* [ Wmul] , < CllpRo(WpMul] ,



Fourier Mode Bound (Lemma 3.30)

C(ImA)—

o If 2 (for f € 12)

+ Lemma: [|pRy (DI, fll 2 < £

e proof: let u := pRy(A)pll,; f
* Then by Theorem 3.1 (free resolvent in odd dimensions):

* Nl = loRoMpIf Il < € e© U™ D-If |l 2

o Jull? = (—Au, u)



compute (—Au, u)

: . 03 0,

e In polar coordinates we have A= 9 +a—+—62'+A = —D? +£+A r—
Dg T r X r X
72

. 2 [ ' 12
e then -Au = | D; —(;)Dr—Ax+r—2 u

o (—Au,u) = ka fooo fozn (D,? — (i) D, —A_ + lz/rz)uﬂdHrdrdx’
 due to compact support of u we can integrate by parts to get

00 2
Sy 1 (10,1 + VUl + 5 Jul?) dordrdx

2 12|ul|?
°« > < c u, u> > L2
r2 L2 C




Fourier Mode Bound

* llullyr = lpRoMpIfllg1 < € e€UmD-||f]| 2

2
12 ull?,

 [|lu 12{1 > (—Au,u)=

€ mA-iifll g _  eCUmA-Ifl

<
1] =C (1)

1
¢ uL2SC



Returning

* | Mmul| . < ClloRo(DpTul| ,
CImA)—
’ C”pRO(A)pHJ‘HJ’u”LZ = = () ”Hfu”LZ
ceClAl
()
* lemma 3.31 (Two sided sequences):

* leta; = ||l'[ju||L2 and (; =

* Given {aj}z a sequence going to zero in both directions such that for some
m € Z,o, ] € N we have that for all j there exist (; = 0 such that
|aj+m| <Cjand C; < 1for|j| =]

* Thena; =0forj € Z



proof of two sided sequence

* hypoth: a; —ljl=eo 0, |Clj_|_m| < Cj, C|j|2] <1

* fix j, have

| < Com |ajom| < -+ < Tliemt Gmtom|@j—mp| < K|y

*asp — o where K := ]_[|l|<] C, > ]_[|j_mk|<] Ci—tem

°soaj:0



