
Chapter 3.4
Upper Bounds on the number of 

resonances
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Motivation

• if we have the operator on a bounded domain (eg ே then 
we have a discrete spectrum, and for ஶ ௡ , Weyl's law 
gives us

• ଶ
்೙ ௡

௡ ௡ ଵ

௥

• with ௡
ଶ௩௢௟ ஻ೃ೙(଴,ଵ)

ଶగ ೙

• 1-d ோ
ଶ ௖௛௦௨௣௣ ௏

గ
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Theorem 3.27 (Upper bounds on the number 
of resonances)
• for and ௖௢௠௣

ஶ ௡ , let ோ be multiplicity of 
resonance , then:

• ோ ௏
௡

ఒ ஸ௥

• history: ௡ାଵ was proved by Melrose in ’84, ௡ proved by Zworski in 
‘89, there is an upper bound proof for even dimensions (Vodev ‘94), 
lower bounds are still unknown 
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Idea

• Bound ோ by ௛ which is the number of zeros  of 
଴

௡ାଵ . Then control the number of zeros using 
complex analysis by the growth of .
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Define 

• Let ௏ ଴
௡ାଵ with ௖

ஶ on support of 
• To do this we need:
• Lemma 3.24 (Trace class properties)
• ௖௢௠௣

ஶ ௡

• ଴
௣ ௡ାଵ

ଶ

• is an entire family of trace class operators
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Review of trace class operators

• For a compact operator ଵ ଶ on Hilbert spaces, we can write

• ௝ ௝ ௝
ஶ
଴

• ଴ ଵ , ௝ ௝ orthonormal systems. ௝ are called singular 
values.

• An operator is trace class if ௝ , so we must show:

• ௝ ଴
௣

௝
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Review of Singular Values

• compact, then ௝ ௝ ௝
ஶ
଴ with ௝

∗
భ

మ the singular 
values with ଴ ଵ

• ଴ ுభ→ுమ

• Proposition B.15 for compact operators then
• ௝ା௞ ௝ ௞

• ௝ା௞ ௝ ௞

• If A is compact and is bounded, then ௝ ௝ ௝
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prove 
• Let ρଵ ∈ 𝐶௖

ஶ(𝑅௡) with 𝑠𝑢𝑝𝑝 ρଵ ⊂ 𝐵 0, 𝑅 , then we can consider the map

• ρଵ𝑅଴ 𝜆 𝜌ଵ: 𝐿ଶ 𝑇ோ
௡ → 𝐿ଶ(𝑇ோ

௡) with 𝑇ோ = ℝ 𝑅ℤ௡⁄

• 𝑠௝ 𝜌ଵ𝑅଴ 𝜆 𝜌ଵ = 𝑠௝ −Δ
ೃ்
೙ + 1

ିଵ
−Δ

ೃ்
೙ + 1

ଵ
ρଵ𝑅଴ 𝜆 ρଵ

• By proposition B.15 if 𝐴 is compact and 𝐵 bounded, then

• 𝑠௝ 𝐴𝐵 ≤ 𝐵 𝑠௝ 𝐴

• 𝑠௝ −Δ
ೃ்
೙ + 1

ିଵ
−Δ

ೃ்
೙ + 1

ଵ
ρଵ𝑅଴ 𝜆 ρଵ ≤ 𝑠௝ −Δ

ೃ்
೙ + 1

ିଵ
−Δ

ೃ்
೙ + 1

ଵ
ρଵ𝑅଴ 𝜆 ρଵ

• By B.3.9, we get the first term is bounded by 𝐶𝑗ି
మ

೙

• The second term can be bounded using theorem 3.1

• 𝜌𝑅଴ 𝜆 𝜌 ௅మ→ுమ ≤ 𝐶 1 + 𝜆 ଵ𝑒௅ ூ௠ఒ ష

• Putting this together, we get

• 𝑠௝ 𝜌ଵ𝑅଴ 𝜆 𝜌ଵ ≤ 𝐶 𝜆 𝑗ି
మ

೙𝑒௅ ூ௠ ఒ ష

• Finally, take 𝜌ଵ = 1 on 𝑠𝑢𝑝𝑝 𝜌 ∪ 𝑠𝑢𝑝𝑝 𝑉 to get

• 𝑠௝ 𝑉𝑅଴ 𝜆 𝜌 ௣ ≤ 𝐶ଵ 𝜆 ௣𝑗ି
మ೛

೙ exp 𝐶ଵ 𝐼𝑚 𝜆 ି

which is summable when 𝑝 ≥
௡ାଵ

ଶ
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proof

• For a trace class operator , we can define the Fredholm determinant 
, 

• Prop B.28: If is of trace class, then is invertible if and only if 

• We set ଴
௡ାଵ

• let ு be the multiplicity of a zero of 
• Theorem 3.26 (Multiplicity of resonance) 
• Given as above and ு the multiplicity of as a zero of , 

then
• ோ ு for 
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• enough to prove when ோ (by theorem 3.14)
• because is odd, we know that
• ଴

௡ାଵ
଴

௝
଴

௡
௝ୀ଴

• If  is a simple pole of ௏ then since 
• ௏ ଴ ଴

ିଵ
଴

• (3.2.1) we must have that ଴ has a nontrivial kernel 
(Fredholm Operator stuff).

• Therefore the LHS has nontrivial kernel therefore so thet 
ு ோ
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Relate with growth of 

• Jensen’s formula:
• If is holomorphic and is the number of zero of in 

then

௧

଴

௜ఏ
ଶగ

଴

•
ଵ

୪୭୥ ଶ

௡ ௧

௧

ଶ௥

௥

ଵ

୪୭୥ ଶ ௭ ୀଶ௥

• We want to now prove ௡
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bound 

• Use Weyl inequality B.5.11

• ௝
ஶ
௝ୀ଴

• where in our case ଴
௡ାଵ

• Then we can use proposition B.15 again to get

• ௝ ଴
௡ାଵ

௝ ଴
௡ାଵ

• ஶ
௡ାଵ

௝ ଴
௡ାଵ

• ஶ
௡ାଵ

ೕ

೙శభ
଴

௡ାଵ 

12



Bound for 

• So we are after bounding ௝ ଴

• Let's first suppose that , recall that we already proved that

• ௝ ଵ ଴ ଵ
ିଵ ି

భ

೙
ି

మ

೙ ି
ି

భ

೙

• ௞ ଴
௡ାଵ

ஶ
௡ାଵ ି

೙శభ

೙ ଵ
ି

೙శభ

೙

• ௞ ଴
௡ାଵஶ

௞ୀଵ

• Then since ௞ ௞ we get:

• ଵ
ି

೙శభ

೙ஶ
௞ୀଵ

13



Bound for 

• Now let 𝐼𝑚 𝜆 < 0, then by 3.1.19 (Stone's formula for the real laplacian)

• 𝑅଴ 𝜆, 𝑥, 𝑦 − 𝑅଴ −𝜆, 𝑥, 𝑦 =
௜ఒ೙షమ

ଶ ଶగ ೙షభ ∫ 𝑒௜ఒ ఠ,௫ି௬ 𝑑𝜔
ௌ೙షభ

• We can rewrite this as

• 𝜌 𝑅଴ 𝜆 − 𝑅଴ −𝜆 𝜌 = 𝑎௡𝜆௡ିଶ𝐸ఘ 𝜆̅
∗
𝐸ఘ 𝜆

• where 𝐸ఘ 𝜆 𝑢 ω ≔ ∫ 𝑒௜ఒ ఠ,௫ 𝜌 𝑥 𝑢 𝑥 𝑑𝑥
ோ೙  Lଶ R୬ → 𝐿ଶ 𝑆௡ିଵ

• Then we can again use  B.3.5 to get

• 𝑠௝ 𝜌𝑅଴ 𝜆 𝜌 = 𝑠௝ 𝑎௡𝜆௡ିଶ 𝐸ఘ 𝜆̅
∗
𝐸ఘ 𝜆 + 𝜌𝑅଴ −𝜆 𝜌

• Prop B.15 allows us to break up this as:

• 𝑠 ೕ

మ

𝑎௡𝜆௡ିଶ 𝐸ఘ 𝜆̅
∗
𝐸ఘ 𝜆 + 𝑠 ೕ

మ

𝜌𝑅଴ −𝜆 𝜌

• ≤ 𝑎௡ 𝜆 ௡ିଶ 𝐸ఘ 𝜆̅ 𝑠 ೕ

మ

𝐸ఘ 𝜆 + 𝑠 ೕ

మ

𝜌𝑅଴ −𝜆 𝜌

• ≤ 𝐶 exp 𝐶 𝜆 𝑠 ೕ

మ

𝐸ఘ 𝜆 + 𝐶𝑗ି
భ

೙
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Bound  for 

• Now we gotta estimate ௝ ఘ , for which we use the Laplacian on a sphere ௌ೙షభ

• ௝ ఘ ௝ ௌ೙షభ 
ି௟

ௌ೙షభ
௟

ఘ

• By the Weyl law, we can bound the first term by ௟ ି
మ೗

೙షభ 

• The second term can be bounded by using the fact that 
• ௌ೙షభ

௟
ఘ ఘ

ఠ∈ௌ೙షభ,
௫ ஸோ 

ఠ
௟ ௜ఒ ௫,ఠ

• Then we can bound this by Cauchy estimates, which say
• ௡

଴
௡!

௥೙ ௥ where  ௥ is the max value of on a boundary of a ball ௥ ଴

• so playing around we get: ௌ೙షభ
௟

ఘ ଵ
௟

ଵ
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Bound for 

• Then we get ௝ ఘ ଵ
௟ ି

మ೗

೙షభ ଵ

• let's choose a good , using ଶ௟ we have:

• ଵ
௟ ି

మ೗

೙షభ
௝

஼య௟೙షభ 

ି
మ೗

೙షభ ௝
భ

೙షభ

஼ర

where ௝

஼య௘

భ

೙షభ

• Therefore ௝ ఘ ଷ ଶ
௝

భ
೙షభ

஼మ
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finish proof

• Now we can just put everything together, we have:

• 𝑠௞ 𝑉𝑅଴ 𝜆 𝜌 ௡ାଵ ≤ 𝐶 𝑠 ೖ

೙శభ

𝜌𝑅଴ 𝜆 𝜌
௡ାଵ

≤ 𝐶 exp 𝐶 𝜆 𝑠 ೕ

మ

(𝐸ఘ 𝜆 + 𝐶𝑗ି
భ

೙

୬ାଵ

• ≤ 𝐶 exp 𝐶 𝜆 −
௞

భ
೙షభ

஼
+ 𝐶𝑘ି

೙శభ

೙

• So 𝑠௞ 𝑉𝑅଴ 𝜆 𝜌 ௡ାଵ ≤
𝐶ସ exp 𝐶ସ 𝜆 ,       𝑘 ≤ 𝐶ସ 𝜆 ௡ିଵ

𝐶ସ𝑘
ష೙శభ

೙ ,        𝑘 ≥ 𝐶ସ 𝜆 ௡ିଵ

• Therefore we get:
•

• 𝐻 𝜆 ≤ ∏ 1 + 𝑠௞ 𝑉𝑅଴ 𝜆 𝜌 ௡ାଵ ≤ exp 𝐶ସ 𝜆 exp ∑ 𝐶ସ𝑘ି
೙శభ

೙
௞ஹ஼ర ఒ ೙షభ ≤ exp 𝐶ହ 𝜆 ௡
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Chapter 3.5
Complex Valued Potentials with 

no resonance
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Motivation

• Theorem 2.16:

• ோ
ଶ ௖௛௦௨௣௣௏

గ
as 

• so we have infinitely many resonances in dimension 1, this is not the 
case in higher dimensions. 

• There exists potentials with no resonances.
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Theorem 3.29 (Complex Valued potentials with no 
resonances)
• Let ′ be cylindrical coordinates in 𝑘+2 with odd:

• 1 2
′

1 , 2 , ′ 𝑘

• Suppose that 𝑐𝑜𝑚𝑝
∞ 𝑘+2 is of the form:

• 𝑖𝜃𝑚 ′ with 𝑐𝑜𝑚𝑝
∞ 𝑘

• if then 𝑣 is entire (ie there are no poles and therefore no 
resonances for )
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Proof Outline

• Assume there is a pole, get an ଶ resonant state, compute the norms 
of the orthogonal projections onto Fourier modes to see they are all 
zero, and so our resonant state is zero, which gives a contradiction!
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resonant state

• Assume ௏ has a pole.
• by 3.2.18, we know that

• ௏ ଴ ଴
ିଵ

଴

• so simplicity of a pole of ௏ is equivalent to simplicity of a pole of 
଴

ିଵ

• And ோ will imply that ଴
ିଵ has some pole for any 

௖
ஶ ଶା௞ such that on .

• Let's take ᇱ

• By results about poles, we know that there exists a ଶ such that
• ଴

• so ଴ ଴

22



Fourier Mode Projections

• Let 𝑙
′ 𝑖𝑙𝜃 1

2𝜋
′ −𝑖𝑙𝜙2𝜋

0
this is the 

projection onto the 𝑡ℎ fourier mode)
• doesn't depend on , therefore 𝑙 commutes with 0

• since 0
𝑖𝑚𝜃 ′

଴

• therefore 𝑗+𝑚 𝑗+𝑚
𝑖𝑚𝜃

0
𝑖𝑚𝜃

0 𝑗

• 𝑗+𝑚 𝐿2 0 𝑗 𝐿2
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Fourier Mode Bound (Lemma 3.30)

• Lemma: ଴ ௟ ௅మ
஼௘಴ ಺೘ ഊ ష

௟ ௅మ (for ଶ)

• proof: let 0 𝑙

• Then by Theorem 3.1 (free resolvent in odd dimensions):

• 𝐻1 0 𝑙 𝐻1
𝐶 𝐼𝑚 𝜆 −

𝐿2

•
𝐻1
2
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compute 

• In polar coordinates we have Δ 𝑟
2 𝜕𝑟

𝑟

𝜕𝜃
2

𝑟2 𝑥′ 𝑟
2 𝑖𝜕𝑟

𝑟 𝑥′
𝐷θ

2

𝑟2

• then −Δ 𝑟
2 𝑖

𝑟 𝑟 𝑥
′ 𝑙2

𝑟2

• 𝑟
2 𝑖

𝑟 𝑟 𝑥′
2 22𝜋

0

∞

0𝑅𝑘

• due to compact support of we can integrate by parts to get 

• 𝑟
2 2 𝑙2

𝑟2
22𝜋

0

∞

0𝑅𝑘

•
𝑙2

𝑟2
𝐿2

𝑙2 𝑢
𝐿2
2

𝐶
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Fourier Mode Bound

• ுభ ଴ ௟ ுభ
஼ ூ௠ ఒ ష

௅మ

• ுభ
ଶ =

௟మ ௨
ಽమ
మ

஼

•
𝐿2
ଵ 𝑒𝐶 𝐼𝑚 𝜆 − 𝑓

𝐿2

𝑙

𝑒𝐶 𝐼𝑚 𝜆 − 𝑓
𝐿2

𝑙
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Returning

• ௝ା௠ ௅మ ଴ ௝ ௅మ

• ଴ ௝ ௝ ௅మ

஼௘಴ ಺೘ ഊ ష

௝ ௝ ௅మ

• Let ௝ ௝ ௅మ and ௝
஼௘಴ ഊ

௝

• lemma 3.31 (Two sided sequences):

• Given ௝ ஶ

ஶ
a sequence going to zero in both directions such that for some 

ஷ଴, we have that for all there exist ௝ such that 
௝ା௠ ௝ and ௝ for 

• Then ௝ for 
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proof of two sided sequence

• hypoth: ௝
௝ →ஶ , ௝ା௠ ௝, ௝ ஹ௃

• fix , have 

• 𝑗 𝑗−𝑚 𝑗−𝑚 𝑗−𝑘𝑚 𝑗−𝑚𝑝
𝑝
𝑘=1 𝑗−𝑚𝑝

• as where 𝑙 𝑗−𝑘𝑚𝑗−𝑚𝑘 <𝐽𝑙 <𝐽

• so ௝
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