
Chapter 3.4
Upper Bounds on the number of 

resonances
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Motivation

• if we have the operator on a bounded domain (eg ே then 
we have a discrete spectrum, and for ஶ  , Weyl's law 
gives us

• ଶ
் 

  ଵ



• with 
ଶ௩ ೃ(,ଵ)

ଶగ 

• 1-d ோ
ଶ ௦௨ 

గ
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Theorem 3.27 (Upper bounds on the number 
of resonances)
• for and 

ஶ  , let ோ be multiplicity of 
resonance , then:

• ோ 


ఒ ஸ

• history: ାଵ was proved by Melrose in ’84,  proved by Zworski in 
‘89, there is an upper bound proof for even dimensions (Vodev ‘94), 
lower bounds are still unknown 
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Idea

• Bound ோ by  which is the number of zeros  of 


ାଵ . Then control the number of zeros using 
complex analysis by the growth of .
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Define 

• Let  
ାଵ with 

ஶ on support of 
• To do this we need:
• Lemma 3.24 (Trace class properties)
• 

ஶ 

• 
 ାଵ

ଶ

• is an entire family of trace class operators
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Review of trace class operators

• For a compact operator ଵ ଶ on Hilbert spaces, we can write

•   
ஶ


•  ଵ ,   orthonormal systems.  are called singular 
values.

• An operator is trace class if  , so we must show:

•  
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Review of Singular Values

• compact, then   
ஶ
 with 

∗
భ

మ the singular 
values with  ଵ

•  ுభ→ுమ

• Proposition B.15 for compact operators then
• ା  

• ା  

• If A is compact and is bounded, then   
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prove 
• Let ρଵ ∈ 𝐶

ஶ(𝑅) with 𝑠𝑢𝑝𝑝 ρଵ ⊂ 𝐵 0, 𝑅 , then we can consider the map

• ρଵ𝑅 𝜆 𝜌ଵ: 𝐿ଶ 𝑇ோ
 → 𝐿ଶ(𝑇ோ

) with 𝑇ோ = ℝ 𝑅ℤ⁄

• 𝑠 𝜌ଵ𝑅 𝜆 𝜌ଵ = 𝑠 −Δ
ೃ்
 + 1

ିଵ
−Δ

ೃ்
 + 1

ଵ
ρଵ𝑅 𝜆 ρଵ

• By proposition B.15 if 𝐴 is compact and 𝐵 bounded, then

• 𝑠 𝐴𝐵 ≤ 𝐵 𝑠 𝐴

• 𝑠 −Δ
ೃ்
 + 1

ିଵ
−Δ

ೃ்
 + 1

ଵ
ρଵ𝑅 𝜆 ρଵ ≤ 𝑠 −Δ

ೃ்
 + 1

ିଵ
−Δ

ೃ்
 + 1

ଵ
ρଵ𝑅 𝜆 ρଵ

• By B.3.9, we get the first term is bounded by 𝐶𝑗ି
మ



• The second term can be bounded using theorem 3.1

• 𝜌𝑅 𝜆 𝜌 మ→ுమ ≤ 𝐶 1 + 𝜆 ଵ𝑒 ூఒ ష

• Putting this together, we get

• 𝑠 𝜌ଵ𝑅 𝜆 𝜌ଵ ≤ 𝐶 𝜆 𝑗ି
మ

𝑒 ூ ఒ ష

• Finally, take 𝜌ଵ = 1 on 𝑠𝑢𝑝𝑝 𝜌 ∪ 𝑠𝑢𝑝𝑝 𝑉 to get

• 𝑠 𝑉𝑅 𝜆 𝜌  ≤ 𝐶ଵ 𝜆 𝑗ି
మ

 exp 𝐶ଵ 𝐼𝑚 𝜆 ି

which is summable when 𝑝 ≥
ାଵ

ଶ
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proof

• For a trace class operator , we can define the Fredholm determinant 
, 

• Prop B.28: If is of trace class, then is invertible if and only if 

• We set 
ାଵ

• let ு be the multiplicity of a zero of 
• Theorem 3.26 (Multiplicity of resonance) 
• Given as above and ு the multiplicity of as a zero of , 

then
• ோ ு for 
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• enough to prove when ோ (by theorem 3.14)
• because is odd, we know that
• 

ାଵ






ୀ

• If  is a simple pole of  then since 
•   

ିଵ


• (3.2.1) we must have that  has a nontrivial kernel 
(Fredholm Operator stuff).

• Therefore the LHS has nontrivial kernel therefore so thet 
ு ோ
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Relate with growth of 

• Jensen’s formula:
• If is holomorphic and is the number of zero of in 

then

௧



ఏ
ଶగ



•
ଵ

୪୭ ଶ

 ௧

௧

ଶ



ଵ

୪୭ ଶ ௭ ୀଶ

• We want to now prove 
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bound 

• Use Weyl inequality B.5.11

• 
ஶ
ୀ

• where in our case 
ାଵ

• Then we can use proposition B.15 again to get

•  
ାଵ

 
ାଵ

• ஶ
ାଵ

 
ାଵ

• ஶ
ାଵ

ೕ

శభ


ାଵ 
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Bound for 

• So we are after bounding  

• Let's first suppose that , recall that we already proved that

•  ଵ  ଵ
ିଵ ି

భ


ି

మ

 ି
ି

భ



•  
ାଵ

ஶ
ାଵ ି

శభ

 ଵ
ି

శభ



•  
ାଵஶ

ୀଵ

• Then since   we get:

• ଵ
ି

శభ

ஶ
ୀଵ
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Bound for 

• Now let 𝐼𝑚 𝜆 < 0, then by 3.1.19 (Stone's formula for the real laplacian)

• 𝑅 𝜆, 𝑥, 𝑦 − 𝑅 −𝜆, 𝑥, 𝑦 =
ఒషమ

ଶ ଶగ షభ ∫ 𝑒ఒ ఠ,௫ି௬ 𝑑𝜔
ௌషభ

• We can rewrite this as

• 𝜌 𝑅 𝜆 − 𝑅 −𝜆 𝜌 = 𝑎𝜆ିଶ𝐸ఘ �̅�
∗
𝐸ఘ 𝜆

• where 𝐸ఘ 𝜆 𝑢 ω ≔ ∫ 𝑒ఒ ఠ,௫ 𝜌 𝑥 𝑢 𝑥 𝑑𝑥
ோ  Lଶ R୬ → 𝐿ଶ 𝑆ିଵ

• Then we can again use  B.3.5 to get

• 𝑠 𝜌𝑅 𝜆 𝜌 = 𝑠 𝑎𝜆ିଶ 𝐸ఘ �̅�
∗
𝐸ఘ 𝜆 + 𝜌𝑅 −𝜆 𝜌

• Prop B.15 allows us to break up this as:

• 𝑠 ೕ

మ

𝑎𝜆ିଶ 𝐸ఘ �̅�
∗
𝐸ఘ 𝜆 + 𝑠 ೕ

మ

𝜌𝑅 −𝜆 𝜌

• ≤ 𝑎 𝜆 ିଶ 𝐸ఘ �̅� 𝑠 ೕ

మ

𝐸ఘ 𝜆 + 𝑠 ೕ

మ

𝜌𝑅 −𝜆 𝜌

• ≤ 𝐶 exp 𝐶 𝜆 𝑠 ೕ

మ

𝐸ఘ 𝜆 + 𝐶𝑗ି
భ
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Bound  for 

• Now we gotta estimate  ఘ , for which we use the Laplacian on a sphere ௌషభ

•  ఘ  ௌషభ 
ି

ௌషభ


ఘ

• By the Weyl law, we can bound the first term by  ି
మ

షభ 

• The second term can be bounded by using the fact that 
• ௌషభ


ఘ ఘ

ఠ∈ௌషభ,
௫ ஸோ 

ఠ
 ఒ ௫,ఠ

• Then we can bound this by Cauchy estimates, which say
• 


!

  where   is the max value of on a boundary of a ball  

• so playing around we get: ௌషభ


ఘ ଵ


ଵ
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Bound for 

• Then we get  ఘ ଵ
 ି

మ

షభ ଵ

• let's choose a good , using ଶ we have:

• ଵ
 ି

మ

షభ


యషభ 

ି
మ

షభ 
భ

షభ

ర

where 

య

భ

షభ

• Therefore  ఘ ଷ ଶ


భ
షభ

మ
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finish proof

• Now we can just put everything together, we have:

• 𝑠 𝑉𝑅 𝜆 𝜌 ାଵ ≤ 𝐶 𝑠 ೖ

శభ

𝜌𝑅 𝜆 𝜌
ାଵ

≤ 𝐶 exp 𝐶 𝜆 𝑠 ೕ

మ

(𝐸ఘ 𝜆 + 𝐶𝑗ି
భ



୬ାଵ

• ≤ 𝐶 exp 𝐶 𝜆 −


భ
షభ


+ 𝐶𝑘ି

శభ



• So 𝑠 𝑉𝑅 𝜆 𝜌 ାଵ ≤
𝐶ସ exp 𝐶ସ 𝜆 ,       𝑘 ≤ 𝐶ସ 𝜆 ିଵ

𝐶ସ𝑘
షశభ

 ,        𝑘 ≥ 𝐶ସ 𝜆 ିଵ

• Therefore we get:
•

• 𝐻 𝜆 ≤ ∏ 1 + 𝑠 𝑉𝑅 𝜆 𝜌 ାଵ ≤ exp 𝐶ସ 𝜆 exp ∑ 𝐶ସ𝑘ି
శభ


ஹర ఒ షభ ≤ exp 𝐶ହ 𝜆 
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Chapter 3.5
Complex Valued Potentials with 

no resonance
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Motivation

• Theorem 2.16:

• ோ
ଶ ௦௨

గ
as 

• so we have infinitely many resonances in dimension 1, this is not the 
case in higher dimensions. 

• There exists potentials with no resonances.
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Theorem 3.29 (Complex Valued potentials with no 
resonances)
• Let ′ be cylindrical coordinates in 𝑘+2 with odd:

• 1 2
′

1 , 2 , ′ 𝑘

• Suppose that 𝑐𝑜𝑚𝑝
∞ 𝑘+2 is of the form:

• 𝑖𝜃𝑚 ′ with 𝑐𝑜𝑚𝑝
∞ 𝑘

• if then 𝑣 is entire (ie there are no poles and therefore no 
resonances for )
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Proof Outline

• Assume there is a pole, get an ଶ resonant state, compute the norms 
of the orthogonal projections onto Fourier modes to see they are all 
zero, and so our resonant state is zero, which gives a contradiction!
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resonant state

• Assume  has a pole.
• by 3.2.18, we know that

•   
ିଵ



• so simplicity of a pole of  is equivalent to simplicity of a pole of 


ିଵ

• And ோ will imply that 
ିଵ has some pole for any 


ஶ ଶା such that on .

• Let's take ᇱ

• By results about poles, we know that there exists a ଶ such that
• 

• so  
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Fourier Mode Projections

• Let 𝑙
′ 𝑖𝑙𝜃 1

2𝜋
′ −𝑖𝑙𝜙2𝜋

0
this is the 

projection onto the 𝑡ℎ fourier mode)
• doesn't depend on , therefore 𝑙 commutes with 0

• since 0
𝑖𝑚𝜃 ′



• therefore 𝑗+𝑚 𝑗+𝑚
𝑖𝑚𝜃

0
𝑖𝑚𝜃

0 𝑗

• 𝑗+𝑚 𝐿2 0 𝑗 𝐿2
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Fourier Mode Bound (Lemma 3.30)

• Lemma:   మ
  ഊ ష

 మ (for ଶ)

• proof: let 0 𝑙

• Then by Theorem 3.1 (free resolvent in odd dimensions):

• 𝐻1 0 𝑙 𝐻1
𝐶 𝐼𝑚 𝜆 −

𝐿2

•
𝐻1
2
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compute 

• In polar coordinates we have Δ 𝑟
2 𝜕𝑟

𝑟

𝜕𝜃
2

𝑟2 𝑥′ 𝑟
2 𝑖𝜕𝑟

𝑟 𝑥′
𝐷θ

2

𝑟2

• then −Δ 𝑟
2 𝑖

𝑟 𝑟 𝑥
′ 𝑙2

𝑟2

• 𝑟
2 𝑖

𝑟 𝑟 𝑥′
2 22𝜋

0

∞

0𝑅𝑘

• due to compact support of we can integrate by parts to get 

• 𝑟
2 2 𝑙2

𝑟2
22𝜋

0

∞

0𝑅𝑘

•
𝑙2

𝑟2
𝐿2

𝑙2 𝑢
𝐿2
2

𝐶
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Fourier Mode Bound

• ுభ   ுభ
 ூ ఒ ష

మ

• ுభ
ଶ =

మ ௨
ಽమ
మ



•
𝐿2
ଵ 𝑒𝐶 𝐼𝑚 𝜆 − 𝑓

𝐿2

𝑙

𝑒𝐶 𝐼𝑚 𝜆 − 𝑓
𝐿2

𝑙
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Returning

• ା మ   మ

•    మ

  ഊ ష

  మ

• Let   మ and 
 ഊ



• lemma 3.31 (Two sided sequences):

• Given  ஶ

ஶ
a sequence going to zero in both directions such that for some 

ஷ, we have that for all there exist  such that 
ା  and  for 

• Then  for 
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proof of two sided sequence

• hypoth: 
 →ஶ , ା ,  ஹ

• fix , have 

• 𝑗 𝑗−𝑚 𝑗−𝑚 𝑗−𝑘𝑚 𝑗−𝑚𝑝
𝑝
𝑘=1 𝑗−𝑚𝑝

• as where 𝑙 𝑗−𝑘𝑚𝑗−𝑚𝑘 <𝐽𝑙 <𝐽

• so 
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